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The level set method was originally designed for problems dealing with codimen-
sion one objects, where it has been extremely succesful, especially when topological
changes in the interface, i.e., merging and breaking, occur. Attempts have been made
to modify it to handle objects of higher codimension, such as vortex filaments, while
preserving the merging and breaking property. We present numerical simulations of
a level set based method for moving curves inR3, the model problem for higher
codimension, that allows for topological changes. A vector valued level set function
is used with the zero level set representing the curve. Our results show that this
method can handle many types of curves moving under all types of geometrically
based flows while automatically enforcing merging and breaking.c© 2001 Academic Press

1. INTRODUCTION

Moving higher codimensional objects is of interest in many areas of mathematics and the
physical world. We consider here the model problem of moving a curve inR3, a codimension
two object, according to geometric quantities of the curve. This type of motion is called geo-
metrically based motion and, simply put, is the motion of a curve based on its configuration.
Curves inR3 themselves, under a geometrically based motion, can be used to model various
phenomena in the physical world. Vortex filaments, such as smoke rings, can be represented
in this way, as can the vortex lines in superfluid helium [10]. Such flows of curves have also
been used for active contours in image processing [11]. In pure mathematics, curve shorten-
ing, the motion of a curve by its curvature, has been and is continuing to be studied [2] and
motion in the binormal direction has a link to the Schr¨odinger equation. Finally, extension
of the level set method as a tool to handle objects of higher codimension is of great interest.
A list of further problems dealing with codimension two objects can be found in [8].

1 Research supported in part by ONR N00014-97-0027, NSF DMS 9706827, and ARO DAAG 55-98-1-0323.
2 Research supported in part by an NDSEG Fellowship.

720

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press
All rights of reproduction in any form reserved.



MOTION OF CURVES USING A LEVEL SET APPROACH 721

FIG. 1. The picture on the left shows two lines, one on top of the other. The picture on the right shows our
merging requirement in action when the two lines touch. Note the curve reconnects according to the acute angles.

In addition, we are further interested in cases of motions of curves that exhibit topological
changes, i.e., merging and breaking. For curves inR2, this concept is simple and readily
observed in two phase flow [17]. For curves inR3, merging and breaking should behave
as in the case of smoke rings. This follows curve shortening principles as in the Ginzburg–
Landau model (see [4, 9, 15]), meaning when two segments of the curve touch, the curve
breaks and reconnects in the acute angle directions (see Fig. 1). Pictures of merging and
breaking can also be found in [10] and [15].

Attempts to extend the level set method for use on curves inR3 have been studied by
De Giorgi [6] and Ambrosio and Soner [3]. They were interested in the theoretical aspects
of curvature motion but also outlined algorithms to capture the flow. In the algorithms, a
single level set function, usually the squared distance to the curve, was used to represent
curves inR3. This was done in the standard level set way, with the curve being represented
by the zero level set of the level set function. Note in this formulation, the zero level set is
also the set of points achieving the minimum value. One problem, numerically, with this
method is in accurately determining the location of the curve. The main problem, however,
for the topic we consider here is that in simulations, we see the handling of topological
changes does not carry over. A phenomenon called “thickening” occurs, where the zero
level set develops a nonempty interior, when curves try to merge (see Fig. 2 and [5]). The
formulation, however, was successful in the theoretical study of curvature flow.

The study of curves inR3 has also been attempted from other directions, for example,
using front tracking [7]. This is where the curve is parametrized and numerically represented
by discrete points, each of which is then evolved under the flow. Recording the positions
of these points along with interpolation thus gives the curve at all time. The main problem
with this approach lies in finding and enforcing merging or breaking when it occurs. This
has proven to be difficult for curves inR2 and is equally difficult, if not more so, for curves
in R3. On the other hand, another approach, diffusion generated motion by Ruuthet al.
[15], can correctly deal with topological changes but so far is limited to curvature flow. The
results for curvature flow, however, are good, and we have compared them with our results
whenever possible.

2. LEVEL SET REPRESENTATION OF THE CURVE

The representation we adopt makes use of two level set functions to model a curve in
R3, an approach Ambrosio and Soner [3] suggested first but did not pursue because the
theoretical aspects were too difficult. In this formulation, a curve is represented by the
intersection between the zero level sets of two level set functions,φ andψ , i.e., where
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FIG. 2. These pictures were generated using De Giorgi’s method. The picture on the left shows two helices
about to touch. The picture on the right shows thickening occurring when they do touch. The merging requirement
is not satisfied here.

φ = ψ = 0. Here,φ andψ can be considered as the two components of a vector valued
level set function whose zeros give the curve inR3. Thus, we can consider objects of
arbitrary codimension by using a vector valued level set function with the correct number
of components. For example, the zeros of anm component vector valued function over Rn

can be used to represent a codimensionm object in dimensionn. Note, the set of points
satisfyingφ = C1 andψ = C2, whereC1 and C2 are constants, are also curves inR3.
Finally, as is standard in level set methods, we regularize|∇φ| and|∇ψ | to avoid division
by zero at degeneracies.

Under this representation, moving a curve by a certain type of motion is accomplished
by evolving the functionsφ andψ in R3, keeping in mind that the intersection of their zero
level sets gives the curve. Usually, the curves gotten from the intersections of other level
sets ofφ andψ will move under the same type of motion. This, of course, is not needed.
The only requirement for movement of the other curves is not to interfere with the desired
curve.

2.1. Geometric Quantities

In order to move a curve by a geometrically based motion, we need to be able to derive
all relevant geometric quantities of the curve in terms of our representation, i.e., in terms
of φ andψ . Important quantities include tangent vectors, curvature times normal vectors,
normal vectors, binormal vectors, and torsion times normal vectors.

To find the tangent vectorsT , we notice that∇ψ ×∇φ, taken on the curve, is tangent to
the curve. So the tangent vectors are just a normalization of this,

T = ∇ψ ×∇φ|∇ψ ×∇φ| .

Note if we replaceφ with −φ, the direction of the tangent vectors will be reversed.
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For the curvature times normal,κN, of the curve, we use the definition that it is the
change in the tangent vector along the curve,

κN = dT

ds
.

Using directional derivatives, this becomes

κN = ∇T · T =

∇T1 · T
∇T2 · T
∇T3 · T

 ,
whereT1, T2, andT3 are the components ofT . We may then use the expression forT to
write this in terms ofφ andψ .

For the normal vectors,N, of the curve, we use the definition that it is the normalization
of κN,

N = κN

|κN| .

The binormal vectors B are then obtained using the definition

B = T × N.

Note the direction of the binormal vectors are reversed if we replaceφ by−φ. Finally, the
torsion times normal vectors can be derived using the definition

τN = −∇B · T.

All these geometric quantities can be written in terms ofφ andψ by using the corre-
sponding expression forT . Also, note the above geometric quantities derived at an arbitrary
point in R3 are quantities for the curve{φ = C1, ψ = C2} that passes through that point.
For more on the definitions of the geometric quantities introduced above, see [2].

3. THE EVOLUTION EQUATION

Moving the curve inR3 using our representation requires moving the level set functions
φ andψ . We will first investigate the motion of a curve under a given vector fieldv in R3.
From standard level set ideas, we know that the partial differential equation

φt + v · ∇φ = 0

moves the level sets ofφ according tov. Similarly,

ψt + v · ∇ψ = 0

moves the level sets ofψ according tov. Therefore, the system of partial differential
equations,

φt + v · ∇φ = 0
ψt + v · ∇ψ = 0,
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moves the intersections of the level sets ofφ andψ , especially the zero level sets, according
to v. This can be derived in a more precise fashion.

Let γ (s, t) denote the intersection between two level set surfaces ofφ and ψ . So
φ(γ (s, t), t) = C1 andψ(γ (s, t), t) = C2. Taking a derivative with respect tot gives

∇φ(γ (s, t), t) · γt (s, t)+ φt (γ (s, t), t) = 0

∇ψ(γ (s, t), t) · γt (s, t)+ ψt (γ (s, t), t) = 0.

Since the curve is moving under the vector fieldv, this meansγt (s, t) = v. Therefore, since
C1 andC2 are arbitrary, we get back the system of equations above, valid in all ofR3.

3.1. More General Motions

By allowingv depend onφ andψ and their derivatives, we can write down the evolution
equations for any type of motion. For example, settingv = κN in the evolution equations
above gives curvature motion in the normal direction. Similarly,v = N gives motion in the
normal direction at unit speed,v = B gives motion in the binormal direction at unit speed,
v = τN gives torsion motion in the normal direction, andT × κN gives a motion related
to that of vortex lines in superfluid helium. We now study some of these motions more
carefully and present numerical discretizations and results.

4. CURVATURE MOTION

The evolution equations for curvature motion take the form

φt + κN · ∇φ = 0

ψt + κN · ∇ψ = 0,

whereκN is as defined above in all ofR3. This, in fact, can also be derived from modified
gradient descent minimizing the length of the curve. For codimension one and the standard
level set method, this means the introduction of the term|∇φ|, which still preserves energy
minimization (see, e.g., [12]). Notice first that the length of the curve represented by the
intersection of the zero level sets ofφ andψ can be written as

L(φ, ψ) =
∫

R3
δ(φ)δ(ψ)|P∇ψ∇φ‖∇ψ | dx,

whereδ is the one-dimensional delta function and Pv is the orthogonal projection matrix
that projects vectors onto the plane with normal vectorv,

Pv = I − v ⊗ v|v|2 .

In R3, we have|Pvω| = |v×ω||v| , and so we can also write the length as

L(φ, ψ) =
∫

R3
δ(φ)δ(ψ)|∇φ ×∇ψ | dx.
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PROPOSITION1. The Euler–Lagrange equations for this energy are

0= −∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
δ(ψ)δ(φ)

0= −∇ ·
(

P∇φ∇ψ
|P∇φ∇ψ | |∇φ|

)
δ(φ)δ(ψ).

Proof. See Appendix.

This can be rewritten as(
0
0

)
=
(
δ(φ)δ(ψ) 0

0 δ(φ)δ(ψ)

)−∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
−∇ ·

(
P∇φ∇ψ
|P∇φ∇ψ | |∇φ|

)
 .

Following standard level set practice [19], we try to replace the matrix of delta functions,
viewed as smoothed out delta functions, with a positive definite matrix that will give, on
the right-hand side of the Euler–Lagrange equations,(

κN · ∇φ
κN · ∇ψ

)
.

Then modified gradient descent minimizing the length of the curve will be equivalent to
curvature motion. For this, we have

PROPOSITION2. The replacement matrix that gives equivalence is the symmetric positive
definite matrix given by  |∇φ|

|P∇φ∇ψ |
∇φ · ∇ψ

|P∇ψ∇φ||∇ψ |
∇φ·∇ψ

|P∇φ∇ψ ||∇φ|
|∇ψ |
|P∇ψ∇φ|

 .
Proof. See Appendix.

Note because this replacement matrix is symmetric positive definite, the length is still be-
ing minimized, i.e.,ddt L(φ, ψ) ≤ 0. This means curvature motion, under our representation,
follows a curve shortening process.

4.1. Numerical Considerations

For all our numerical discretizations, we will lay down a uniform grid overR3 and use fi-
nite difference schemes. Finite differencing simplifies high-order numerical discretizations
of the partial differntial equations, and the uniform grid simplifies finite difference scheme
construction and implementation. We thus discretize the curvature evolution equation, which
is parabolic, by using second-order central differencing on all spatial derivatives (see, e.g.,
[19]). The caseT = 0 is regularized to remove singularities in the curvature expression.
This is usually accomplished by introducing small positive constants into the denominators
to prevent them from becoming zero, a standard level set practice (see [12]). The results we
get using this particular regularization seems to agree with the curve shortening results of
[15]. For the time discretization, we use Total Variation Diminishing Runge–Kutta (TVD-
RK) of third order (see [16]). The associated Courant–Friedrichs–Lewy (CFL) condition
says that the time step1t needs to be less than a constant times1x2, where1x denotes
the spatial step size. In our simulations, we usually take the constant to be 0.5.
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TABLE I

Order of Accuracy Analysis for a Double Helix Moving under Curvature Flow

Grid size Error Order

32× 32× 32 0.00459276
64× 64× 64 0.00140586 1.7079

128× 128× 128 0.000356941 1.9777

Note. Results show the method is second order accurate under the maximum norm.

This representation allows topological changes to occur, as shown by our numerical
simulations. The time of merging or breaking does not have to be computed and there is no
need for switches to enforce the topological changes. All of this is automatically handled
by the representation. The evolution equation is simply solved until the desired time and
the resultingφ andψ gives the curve, even when merging or breaking has taken place
previously. Also, the curve location does not have to be computed until the curve is to be
plotted.

Plotting itself is carried out by using interpolation schemes. Each cube in the grid is broken
up into six tetrahedra, inside of whichφ andψ can be approximated by hyperplanes. The
intersection of the zero level sets of the two hyperplanes can then be computed, giving a
small segment of line inside each tetrahedron. The union of all these segments gives an
approximation of the curve. Higher order interpolation schemes can also be used without
adversely affecting the speed of the algorithm since curve location is only needed at the end
of the run.

Numerical simulations show that the method is second-order accurate. One such result is
shown in Table I. This test compared the numerical evolution of a double helix inR3 with
the exact solution, as detailed in [15]. The errors computed are in the maximum norm.

We consider the motion of a single helix in Fig. 3. The helix straightens out, as it should,
as time progresses. Evolution of two slightly translated helices is presented in Fig. 4. The
helices move independently of each other, each one straightening itself out, until they touch.
Merging then occurs, with the resulting curves continuing to flow by curvature and shrink.
Another example with two helices is shown in Fig. 5. The two strands again touch, and
merging and breaking occurs. The resulting curve then continues to flow by curvature. In
Fig. 6, we consider the motion of linked rings. At first, each ring will shrink its radiusr by
a speed of1r . Eventually the rings touch, and merging and breaking occurs. The resulting
curve then continues flowing by curvature. This result can be compared to that in [15].
Initialization for the level set functions for these rings is derived by the same strategy as
in [15]. Finally, Fig. 7 and 8 show the evolution of other curves. The zero level sets of the
initial level set functions of Fig. 8 are a cube and an ellipsoid. From these examples, we see
that our method can handle curvature motion, even in the presence of merging and breaking
of the curve.

5. NORMAL AND BINORMAL MOTION

The evolution equation for motion in the normal direction at unit speed is

φt + N · ∇φ = 0
ψt + N · ∇ψ = 0.
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FIG. 3. This shows a single helix evolving under curvature motion. The curve remains helical in form but the
radius about the center axis shrinks, straightening out the curve.

We discretize the time derivative using third-order TVD-RK and all spatial derivatives using
second-order central differencing. Singularities occurring at|T | = 0 and|κN| = 0 are reg-
ularized. Note geometrically,N is not defined when|κN| = 0. Also the use here of central
differencing in space is for convenience. High-order schemes, such as ENO and WENO
schemes, can be used in general by viewing the evolution equations as transport equations.

We consider a potato chip shaped curve as our initial curve in Fig. 9. Normal motion
in our simulations causes a sharp kink to develop in the curve after a certain time. This is

FIG. 4. This shows two slightly translated helices evolving under curvature motion. The translation allows
the helices to eventually touch and merge. The resulting curve then continues to evolve under curvature motion
and shrink.
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FIG. 5. This is another picture of two helices evolving under curvature motion. The two touch and merge at
a certain time. The resulting curve then continues to evolve under curvature motion.

because parts of the curve have rammed together and merging is enforced. In a standard
tracking algorithm that allows curves to pass through each other, a swallow tail would
appear instead. The zero level sets of the level set functions for the initial curve are a sphere
and an ellipsoid.

FIG. 6. This shows two linked rings evolving under curvature motion. The two rings shrink indepen-
dent of each other until they touch and merge. The resulting curve then continues to evolve under curvature
motion.
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FIG. 7. This shows two complicated curves evolving under curvature motion. The simulation stops before
the curves touch.

The evolution equation for motion in the binormal direction at unit speed is

φt + B · ∇φ = 0
ψt + B · ∇ψ = 0.

Once again, we discretize the time derivative using third-order TVD-RK and all the spatial
derivatives using second-order central differencing. The singularities occurring at|T | = 0

FIG. 8. This shows a curve with kinks evolving under curvature motion. The kink is smoothed out almost
immediately and then shrinks to a circle.
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FIG. 9. This shows the time evolution of a curve under constant flow in the normal direction. The curve is
initially shaped like the boundary of a potato chip and shrinks thereafter. Note a kink forms in the curve at a certain
time, an indication of merging.

and|κN| = 0 are regularized. Note ENO and WENO schemes can also be used here for
the spatial discretization.

We consider the simple case of a circle moving under binormal motion in Fig. 10. The
circle is translated, which is the correct solution. In Fig. 11, we look at the evolution of two
helices. Both slightly rotate in opposite directions.

The cases of normal and binormal motion are not as nice as the case of curvature motion
and not all initial curves evolve nicely. More work needs to be done on the discretization
of the equations, especially the regularization of singularities. Flows we have not studied
here include motion by torsion times normal and motion under the velocity fieldT × κN.
The latter motion is related to vortex lines moving in superfluid helium.

5.1. Combinations

We can combine the motions we have studied above to form other types of motions. For
example, taking the velocity fieldv = N + εκN gives motion in the normal direction with
some curvature flow.

We look at the evolution of the potato chip shaped curve in Fig. 12. The termε is taken
to be 0.1 and the result does not have a sharp kink anymore because of regularization by
the curvature term.

6. REMARKS

Some remaining difficulties include theoretical justification, which we will not investigate
here; creating an optimal local method; and initializingφ andψ to create a given curve.
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FIG. 10. This shows the time evolution of a circle under constant flow in the binormal direction. Since the
original curve lies on a plane, the evolution is simply translation in the normal direction of the plane. In this picture,
the circle moves in the downward direction.

6.1. Local Level Set Method

We would like to solve our evolution equations only in a small neighborhood of the curve
instead of over all ofR3. This would give optimal efficiency in both speed and memory
usage. Solving in all ofR3, however, is sometimes needed, for example, when the curves
coming from the intersections of other level sets ofφ andψ play a role. It can also be
adequate, for example, if the problem we are considering requires other equations to be
solved in all ofR3. But for the type of problems we have discussed here, a more local
method is needed. Such an algorithm for curves inR2 or surfaces inR3 has been created
[14] (see also [1]) but a few things need to be added when considering curves inR3. The
main idea involves only doing computations in a tube around the curve with radius a constant
times1x. Reinitialization needs to be performed occasionally to keep errors at the boundary
of the tube from influencing the curve. For curves inR2, this is accomplished by replacing
the level set function with the signed distance function to the curve at each time step. Thus,
at each grid point, the level set function is given a value depending only on its zero level
and not the other level sets.

Our first step in optimizing our algorithm is to cut down one of the dimensions by
localizing around the zero level set of one of the level set functions, sayψ . The motion
of ψ will exactly follow the procedure stated in [14] to achieve localization. The motion
of φ will also follow some of the same techniques. Instead of the standard signed distance
reinitialization,φ can be reinitialized by first solving

φ̃t + sign(φ)(|P∇ψ∇φ̃| − 1) = 0

φ̃(t = 0) = φ,
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FIG. 11. This shows the time evolution of two helices under constant flow in the binormal direction. Each
helix rotates about its center axis but in opposite directions.

FIG. 12. This shows the time evolution of an initial potato chip shaped curve by unit speed in the normal
direction combined with 0.1 times curvature. Note a kink no longer forms because of adding the curvature term.
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to its steady state solution,φ̃∞, and then solving

φ̂t + sign(φ)
∇ψ
|∇ψ | · ∇φ̂ = 0

φ̂(t = 0) = φ̃∞

to its steady state solution, finally replacingφ by this function. This can be done every few
time steps. The first equation makesφ into signed distance away from its zero level set,
with distance measured on the level set surfaces ofψ . The second equation makes the level
set surfaces ofφ perpendicular to the zero level set surface ofψ . Both do not change the
location of the intersection of the zero level sets but makes the other level sets well behaved
during the flow. All this together allows us to treat the problem like a two-dimensional one,
centered about the zero level set ofψ , thus effectively reducing both the speed and memory
usage of the algorithm.

A completely localized, and thus optimal, algorithm for curves inR3, however, has not yet
been completed. Certain problems may arise from such an algorithm; for example, a twist
of the level set functions about the curve may introduce spurious curves during topological
changes. These kinds of abonormalities do not occur ifφ andψ are globally defined. Also,
the reinitialization process in standard local level set methods needs to be further studied
and adapted.

6.2. Initialization

Another issue is how to choose the initial level set functions to create a desired curve.
In some occasions, the initial functions are given, for example, as Clebsch variables (see
[18]). Usually, however, they need to be constructed by hand. The difficulty in this lies in
forming the functionsφ andψ in all of R3. Forming these functions local to the curve
is very easy but sometimes these local constructions cannot be extended toR3, causing
problems during topological changes. However, as Fig. 6 shows, creating initial level set
functions for complicated curves is not impossible. Another problem that may arise is that
some constructions may hamper merging for certain motions. This also needs to be studied
further.

7. CONCLUSION

We have analyzed a level set based method for representing and moving higher codi-
mensional objects, especially curves inR3. As numerical results show, the representation
automatically handles mergings and breakings of the curve. Evolution equations on the level
set functions can then be used to move the curve under a variety of geometrically based
flows. An underlying uniform grid allows for easy high-order finite difference scheme con-
structions. All this sets up a foundation to deal with higher codimensional objects, especially
when merging and breaking can occur.

8. PROOFS OF PROPOSITIONS

These “proofs” are really only formal derivations. For example, we have not defined the
precise spaces of functions we are using. Nevertheless, we present them as a formal guide
to why the method seems to work well.
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Proof of Proposition 1. We will derive the Euler–Lagrange equations for the energy

L(φ, ψ) =
∫

Rn

|P∇ψ∇φ‖∇ψ |δ(φ)δ(ψ)dx,

whereφ andψ are real valued functions overRn.
Note

|P∇ψ∇φ|2|∇ψ |2 = |∇φ|2|∇ψ |2− (∇φ · ∇ψ)2 = |P∇φ∇ψ |2|∇φ|2,

and, therefore,

|P∇ψ∇φ||∇ψ | =
√
|∇φ|2|∇ψ |2− (∇φ · ∇ψ)2 = |P∇φ∇ψ ||∇φ|.

So,

d

ds

∣∣∣∣
s=0

(|P∇ψ+s∇ν(∇φ + s∇η)||∇ψ + s∇ν|δ(φ + sη)δ(φ + sν))

= d

ds

∣∣∣∣
s=0

(|P∇ψ(∇φ + s∇η)||∇ψ |δ(φ + sη)δ(ψ))

+ d

ds

∣∣∣∣
s=0

(|P∇ψ+s∇ν∇φ||∇ψ + s∇ν|δ(φ)δ(ψ + sν))

= d

ds

∣∣∣∣
s=0

(|P∇ψ(∇φ + s∇η)||∇ψ |δ(φ + sη)δ(ψ))

+ d

ds

∣∣∣∣
s=0

(|P∇φ(∇ψ + s∇ν)||∇φ|δ(ψ + sν)δ(φ)).

Therefore,

d

ds

∣∣∣∣
s=0

L(φ + sη,ψ + sν) = d

ds

∣∣∣∣
s=0

∫
Rn

|P∇ψ(∇φ + s∇η)||∇ψ |δ(φ + sη)δ(ψ) dx

+ d

ds

∣∣∣∣
s=0

∫
Rn

|P∇φ(∇ψ + s∇ν)||∇φ|δ(ψ + sν)δ(φ) dx.

We now state and use

LEMMA 1. The Euler–Lagrange equation of the energy

E(φ) =
∫

R3
δ(φ)δ(ψ)|P∇ψ∇φ||∇ψ | dx,

is

0= −∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
δ(ψ)δ(φ).
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So, using this and its version withφ replaced byψ , we get that the Euler–Lagrange
equations are

0= −∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
δ(ψ)δ(φ)

0= −∇ ·
(

P∇φ∇ψ
|P∇φ∇ψ | |∇φ|

)
δ(φ)δ(ψ).

Proof of Lemma 1. We will prove the more general statement that the Euler–Lagrange
equation of the energy

E(φ) =
∫

R3
β

(
P∇ψ∇φ
|P∇ψ∇φ|

)
δ(ψ)δ(φ)|∇ψ ×∇φ| dx.

is

0= −∇ · (P∇ψ∇β(P∇ψ∇φ)|∇ψ |)δ(ψ)δ(φ),

whereβ is a real valued homogeneous of degree one function overR3. Noteβ(p) = |p|,
p ∈ R3, then finishes the proof.

We have, sinceβ is a homogeneous of degree one function,

E(φ)=
∫

R3
β

(
P∇ψ∇φ
|P∇ψ∇φ|

)
|P∇ψ∇φ||∇ψ |δ(ψ)δ(φ)dx=

∫
R3
β(P∇ψ∇φ)δ(φ)|∇ψ |δ(ψ)dx.

So,

d

ds

∣∣∣∣
s=0

E(φ + sη) =
∫

R3
(Dβ(P∇ψ∇φ) · P∇ψ∇η)δ(φ)|∇ψ |δ(ψ) dx

+
∫

R3
β(P∇ψ∇φ)δ′(φ)|∇ψ |δ(ψ)η dx

= I + J,

whereI is the first integral on the right-hand side andJ is the second. Now,

I =
∫

R3

(
Dβ(P∇ψ∇φ) ·

(
∇η − ∇ψ · ∇η|∇ψ |2 ∇ψ

))
δ(φ)|∇ψ |δ(ψ) dx

= −
∫

R3
∇ · (Dβ(P∇ψ∇φ)δ(φ)|∇ψ |δ(ψ))η dx

+
∫

R3
∇ ·
(
(Dβ(P∇ψ∇φ) · ∇ψ)∇ψδ(φ) δ(ψ)|∇ψ |

)
η dx

= −
∫

R3
∇ · (Dβ(P∇ψ∇φ)|∇ψ |δ(ψ))δ(φ)ηdx

−
∫

R3
(Dβ(P∇ψ∇φ) · ∇φ)δ′(φ)|∇ψ |δ(ψ)η dx

+
∫

R3
∇ ·
(
(Dβ(P∇ψ∇φ) · ∇ψ)∇ψ δ(ψ)|∇ψ |

)
δ(φ)η dx
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+
∫

R3
(Dβ(P∇ψ∇φ) · ∇ψ)(∇ψ · ∇φ)δ′(φ) δ(ψ)|∇ψ |η dx

= −
∫

R3
∇ ·
(

Dβ(P∇ψ∇φ)|∇ψ |δ(ψ)

− (Dβ(P∇ψ∇φ) · ∇ψ)∇ψ δ(ψ)|∇ψ |
)
δ(φ)η dx

−
∫

R3

(
(Dβ(P∇ψ∇φ) · ∇φ)|∇ψ |

− (Dβ(P∇ψ∇φ) · ∇ψ)∇ψ · ∇φ|∇ψ |
)
δ′(φ)δ(ψ)η dx

= −
∫

R3
∇ · (P∇ψDβ(P∇ψ∇φ)|∇ψ |δ(ψ))δ(φ)η dx

−
∫

R3
(P∇ψ∇φ · Dβ(P∇ψ∇φ))δ′(φ)|∇ψ |δ(ψ)η dx.

Note,

∇ · (P∇ψDβ(P∇ψ∇φ)|∇ψ |δ(ψ)) = ∇ · (P∇ψDβ(P∇ψ∇φ)|∇ψ |)δ(ψ),

sinceP∇ψDβ(P∇ψ∇φ) · ∇ψ = 0.
Also, for p ∈ R3, we have

β((1+ ε)p) = (1+ ε)β(p).

Thus, using a suggestion by an anonymous referee, we take a derivative with respect toε

on both sides and evaluate atε = 0. This leads to the equality,

p · Dβ(p) = β(p).

Note especially thatp = P∇ψ∇φ gives

P∇ψ∇φ · Dβ(P∇ψ∇φ) = β(P∇ψ∇φ).

So altogether, we get

d

ds

∣∣∣∣
s=0

E(φ + sη) = −
∫

Rn

∇ · (P∇ψDβ(P∇ψ∇φ)|∇ψ |)δ(ψ)δ(φ)η dx,

and so d
ds

∣∣
s=0

E(φ + sη) = 0 for arbitraryη leads to the Euler–Lagrange equation

−∇ · (P∇ψDβ(P∇ψ∇φ)|∇ψ |)δ(ψ)δ(φ) = 0.

Proof of Proposition 2. We will show that we can getκN · ∇φ andκN · ∇ψ from re-
placing the matrix of delta functions in the right-hand side of the Euler–Lagrange equations.
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We first state the following,

LEMMA 2. P∇ψκN · ∇φ = −∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

) |P∇ψ∇φ|
|∇ψ | .

We see from this that

κN · P∇ψ∇φ = −∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| ||∇ψ |

) |P∇ψ∇φ|
|∇ψ |

κN · P∇φ∇ψ = −∇ ·
(

P∇φ∇ψ
|P∇φ∇ψ | ||∇φ|

) |P∇φ∇ψ |
|∇φ| .

So we want to look for functionsf andg that may depend onφ, ψ , and their derivatives
such that (

f1 g1

g2 f2

)(
κN · P∇ψ∇φ
κN · P∇φ∇ψ

)
=
(
κN · ∇φ
κN · ∇ψ

)
.

This is equivalent to

κN · ( f1P∇ψ∇φ + g1P∇φ∇ψ) = κN · ∇φ
κN · (g2P∇ψ∇φ + f2P∇φ∇ψ) = κN · ∇ψ.

Therefore, we are looking for a decomposition of∇φ in terms ofP∇ψ∇φ andP∇φ∇ψ and
similarly for∇ψ . First note that this is possible since

∇φ × P∇φ∇ψ = ∇φ ×∇ψ = P∇ψ∇φ ×∇ψ,

so we have that∇φ,∇ψ, P∇ψ∇φ, P∇φ∇ψ all lie on the same plane. AlsoP∇ψ∇φ and
P∇φ∇ψ span the plane if we disregard the degenerate case where∇φ and∇ψ are parallel.

Taking a dot product of∇φ with the equations

∇φ = f1P∇ψ∇φ + g1P∇φ∇ψ
∇ψ = g2P∇ψ∇φ + f2P∇φ∇ψ,

gives

f1 = |∇φ|2
|P∇ψ∇φ|2

g2 = ∇φ · ∇ψ|P∇ψ∇φ|2 .

Also, taking a dot product of∇ψ with the same equations gives

f2 = |∇ψ |2
|P∇φ∇ψ |2

g1 = ∇φ · ∇ψ|P∇φ∇ψ |2 .

Note that f1 = f2.
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Therefore, replacing (
δ(φ)δ(ψ) 0

0 δ(φ)δ(ψ)

)
,

in the Euler–Lagrange equations by f1
|P∇ψ∇φ|
|∇ψ | g1

|P∇φ∇ψ |
|∇φ|

g2
|P∇ψ∇φ|
|∇ψ | f2

|P∇φ∇ψ |
|∇φ|

 ,
will give the curvature flow evolution equation. So the replacement matrix can be written
as  |∇φ|

|P∇φ∇ψ |
∇φ · ∇ψ

|P∇ψ∇φ||∇ψ |
∇φ · ∇ψ

|P∇φ∇ψ ||∇φ|
|∇ψ |
|P∇ψ∇φ|

 .
In standard level set prctice in general, this replacement can be used, unchanged, for all
other Euler–Lagrange equations of curve flow inR3.

Note the determinant of our replacement matrix is

|∇φ|2|∇ψ |2− (∇φ · ∇ψ)2
|P∇ψ∇φ|2|∇ψ |2 ,

which is equal to 1. Also, the first entry is positive and the matrix is symmetric, so it is
symmetric positive definite.

Proof of Lemma 2. The main property we will show is

∇ · (T ×∇ψ) = κN · (∇ψ × T),

where

T = ∇ψ ×∇φ|∇ψ ×∇φ| .

Using this to expand the right-hand side of the evolution equation in the second method,
we get

−P∇ψκN · ∇φ = −P∇ψ∇φ · κN

= −κN ·
( |∇ψ |2∇φ − (∇φ · ∇ψ)∇ψ

|∇ψ |2
)

= −κN ·
(
(∇ψ ×∇φ)×∇ψ

|∇ψ |2
)

= −κN ·
(
(∇ψ ×∇φ)×∇ψ
|∇ψ ×∇φ|

) |∇ψ ×∇φ|
|∇ψ |2

= κN · (∇ψ × T)
|∇ψ ×∇φ|
|∇ψ |2
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= ∇ · (T ×∇ψ) |∇ψ ×∇φ||∇ψ |2

= ∇ ·
(
(∇ψ ×∇φ)×∇ψ
|∇ψ ×∇φ|

) |∇ψ ×∇φ|
|∇ψ |2 ,

which finishes the proof.
The proof of the main property we used is as follows. Lete1, e2, e3 be orthonormal. Then

∇ · X = 〈e1(X), e1〉 + 〈e2(X), e2〉 + 〈e3(X), e3〉,

wheree1( f1, f2, f3) = (e1( f1), e2( f2), e3( f3)). This is since forẽ1, ẽ2, ẽ3 orthonormal,
ẽi =

∑3
j=1 aj

i ej , so

3∑
i=1

〈ẽi (X), ẽi 〉 =
3∑

i=1

〈
3∑

j=1

aj
i ej (X),

3∑
k=1

ak
i ek

〉

=
3∑

i=1

3∑
j=1

3∑
k=1

aj
i ak

i 〈ej (X), ek〉

=
3∑

j=1

3∑
k=1

δ jk〈ej (X), ek〉

=
3∑

j=1

〈ej (X), ej 〉.

Therefore, ifẽ1 = (1, 0, 0), ẽ2 = (0, 1, 0), ẽ3 = (0, 0, 1), we get

3∑
i=1

〈ẽi (X), ẽi 〉 = ∇ · X =
3∑

j=1

〈ej (X), ej 〉.

Now, lete1 = ∇ψ×∇φ
|∇ψ×∇φ| , e2 = e1×∇ψ

|e1×∇ψ | , e3 = e1× e2. Notee1, e2, e3 is orthonormal, and the
quantity we wish to investigate is∇ · (e1×∇ψ). Now

∇ · (e1×∇ψ) = 〈e1(e1×∇ψ), e1〉 + 〈e2(e1×∇ψ), e2〉 + 〈e3(e1×∇ψ), e3〉.

But

e1(e1×∇ψ) = e1(e1)×∇ψ + e1× (e1(∇ψ)),

so

〈e1(e1×∇ψ), e1〉 = 〈e1(e1)×∇ψ, e1〉
= 〈κN ×∇ψ, e1〉
= det(κN,∇ψ, e1)

= κN · (∇ψ × e1).
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Also,

〈e2(e1×∇ψ), e2〉 = 〈e2(e1)×∇ψ, e2〉 + 〈e1× (e2(∇ψ)), e2〉.

Nowe1 is a unit vector field impliese2(e1) ⊥ e1, which meanse2(e1) is a linear combination
of ∇ψ ande2. Therefore,

〈e2(e1)×∇ψ, e2〉 = 0,

and so

〈e2(e1×∇ψ), e2〉 = 〈e1× (e2(∇ψ)), e2〉.

Finally,

〈e3(e1×∇ψ), e3〉 = 〈e3(e1)×∇ψ, e3〉 + 〈e1× (e3)(∇ψ)), e3〉.

Now e1 is a unit vector field which impliese3(e1) ⊥ e1. This meanse3(e1) is a linear
combination of∇ψ ande2. Since

〈e2×∇ψ, e3〉 = −〈e2× e3,∇ψ〉 = −〈e1,∇ψ〉 = 0,

therefore,

〈e3(e1×∇ψ), e3〉 = 〈e1× (e3(∇ψ)), e3〉.

So altogether, we have

∇ · (e1×∇ψ) = κN · (∇ψ × e1)+ 〈e1× (e2(∇ψ)), e2〉 + 〈e1× (e3(∇ψ)), e3〉.

But

〈e1× (e2(∇ψ)), e2〉 = −〈e1× e2, e2(∇ψ)〉
= −〈e3, e2(∇ψ)〉,

and

〈e1× (e3(∇ψ)), e3〉 = 〈e3× e1, e3(∇ψ)〉
= 〈e2, e3(∇ψ)〉.

Now

〈e2, e3(∇ψ)〉 =
3∑

i=1

3∑
j=1

ai bj
∂2ψ

∂xi ∂xj
=

3∑
i=1

3∑
j=1

bi aj
∂2ψ

∂xi ∂xj
= 〈e3, e2(∇ψ)〉.

Therefore,

∇ · (e1×∇ψ) = κN · (∇ψ × e1),

which is what we want.



MOTION OF CURVES USING A LEVEL SET APPROACH 741

ACKNOWLEDGMENTS

The authors thank Steve Ruuth for his help on the initialization of level set functions for some of the curves
presented here as well as for his time and input on the subject of curves inR3 and diffusion generated motion.

REFERENCES

1. D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces,J. Comput. Phys.118,
269 (1995).

2. S. J. Altschuler, Singularities of the curve shrinking flow for space curves.J. Differential Geom.34(2), 491
(1991).

3. L. Ambrosio and H. M. Soner, Level set approach to mean curvature flow in arbitrary codimension.
J. Differential Geom.43, 693 (1996).

4. L. Ambrosio and H. M. Soner, A measure theoretic approach to higher codimension mean curvature flows,
Ann. Scuola Normale Sup. Pisa, Cl. Sci.25(4), 27 (1997).

5. G. Bellettini and M. Novaga, An example of three dimensional fattening for linked space curves evolving by
curvature,Comm. Partial Differential Eqs.23, 475 (1998).

6. E. De Giorgi, Barriers, boundaries, motion of manifolds, Lectures (Pavia, Italy, 1994).

7. T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, Removing the stiffness from interfacial flows with surface
tension.J. Comput. Phys.114, 312 (1994).

8. S. D. Howison, J. D. Morgan, and J. R. Ockendon, A class of codimension-two free boundary problems,SIAM
Rev.39(2), 221 (1997).

9. R. L. Jerrard, Fully nonlinear phase field equations and generalized mean curvature motion,Comm. Partial
Differential Eqs.20(1–2), 233 (1995).

10. J. Koplik and H. Levine, Vortex reconnection in superfluid helium,Phys. Rev. Lett.71(9), 1375 (1993).

11. L. M. Lorigo, O. Faugeras, W. E. L. Grimson, R. Keriven, R. Kikinis, and C. F. Westin, Co-dimension 2
geodesic active contours for MRA segmentation, presented at Int’1 Conf. Information Processing in Medical
Imaging, June/July 1999.

12. S. Osher and R. Fedkiw,Level Set Methods: A Survey and Some Recent Results, UCLA CAM Report, 00-08,
2000,J. Comput. Phys., in press.

13. S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-
Jacobi formulations,J. Comput. Phys.79, 12 (1988).

14. D. Peng, B. Merriman, S. Osher, H. K. Zhao, and M. Kang, A PDE-based fast local level set method,
J. Comput. Phys.155, 410 (1999).

15. S. Ruuth, B. Merriman, J. Xin, and S. Osher,Diffusion-Generated Motion by Mean Curvature for Filaments,
UCLA CAM Report, 98-47 (1998).

16. C. W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes,
J. Comput. Phys.77, 439 (1988).

17. M. Sussman, P. Smerka, and S. Osher, A level set method for computing solutions to incompressible two-phase
flow, J. Comput. Phys.114, 146 (1994).

18. V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, Hamiltonian Approach to the Description of Non-Linear
Plasma Phenomena,Phys. Lett.129(5), 285 (1985).

19. H. K. Zhao, T. F. Chan, B. Merriman, and S. Osher, A variational level set approach to multiphase motion,
J. Comput. Phys.127, 179 (1996).


	1. INTRODUCTION
	FIG. 1.
	FIG. 2.

	2. LEVEL SET REPRESENTATION OF THE CURVE
	3. THE EVOLUTION EQUATION
	4. CURVATURE MOTION
	TABLE I
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	5. NORMAL AND BINORMAL MOTION
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	6. REMARKS
	7. CONCLUSION
	8. PROOFS OF PROPOSITIONS
	ACKNOWLEDGMENTS
	REFERENCES

